Richard Sprague

My personal website

Which microbes go with each other?

Created: 2018-04-08 ; Updated: 2018-04-08

Microbes in the body are always part of a community, an ecology of interdependent organisms, some rising, some falling as the environment changes. By watching the shifts over time, I would expect to see some patterns: microbes that consume that same kinds of nutrients may go up and down together as the amounts of those nutrients change. Similarly, a microbe that depends on some waste product secreted by another organism should go up or down depending on the abundance levels of the other organism.

To find patterns, I’ll line up the abundances of every sample I’ve taken, then run a simple correlation analysis to see which microbe levels are most highly-correlated.

Prerequisites: The following example is written in R and I’ve written an R package, actino that converts between uBiome raw data files and Phyloseq, an excellent microbiome analysis tool developed at Stanford’s Bioconductor program.

I start with a Phyloseq object called gut.best that contains the normalized abundances of all my gut microbes. If you follow the actino directions, you should be able to create a similar object for your own data.

Then simply turn that Phyloseq object into a single matrix:

gut.mat <- as.matrix(otu_table(gut.best))

But some taxa are quite rare, occuring in just a few out of hundreds of samples. Let’s ignore any sample where a taxa has fewer than 10 reads; finally, of those that remain, let’s arbitrarily eliminate any taxa that occur fewer than five times. Here we show the resulting total number of samples.

g <- apply(gut.mat,1,function(x) ncol(gut.mat)-sum(x<10)) >= 5
gut.mat <- gut.mat[g,]
nrow(gut.mat)
## [1] 175

Now run the correlations, showing the top 10…

matCorrs<-cor(t(gut.mat)) # matrix of all correlation coefficients
mc<-matCorrs[upper.tri(matCorrs)] # just the upper triangle

ind <- which( upper.tri(matCorrs,diag=F) , arr.ind = TRUE )

mCorr<-data.frame( col = dimnames(matCorrs)[[2]][ind[,2]] ,
                   row = dimnames(matCorrs)[[1]][ind[,1]] ,
                   val = matCorrs[ ind ] )

#head(mCorr[order(mCorr$val, decreasing = TRUE),],10)

mCorr %>% arrange(desc(val)) %>% head(10) %>% knitr::kable()
col row val
Aquabacterium Methylobacterium 0.9995393
Methylobacterium Bradyrhizobium 0.9993668
Aquabacterium Bradyrhizobium 0.9992332
Methylobacterium Phyllobacterium 0.9991739
Aquabacterium Phyllobacterium 0.9986580
Bradyrhizobium Phyllobacterium 0.9985602
Weissella Veillonella 0.9951920
Veillonella Peptostreptococcus 0.9942449
Weissella Peptostreptococcus 0.9907539
Veillonella Campylobacter 0.9838069

…and the bottom:

tail(mCorr[order(mCorr$val, decreasing = TRUE),],10) %>% knitr::kable()
col row val
1354 Butyricimonas Collinsella -0.4043263
1315 Blautia Akkermansia -0.4108318
767 Akkermansia Pseudobutyrivibrio -0.4135541
12254 Fusicatenibacter Acidaminococcus -0.4140983
776 Akkermansia Dorea -0.4193126
6814 Papillibacter Collinsella -0.4442487
769 Akkermansia Collinsella -0.4580287
8413 Anaerovorax Collinsella -0.4769236
1880 Terrisporobacter Oscillibacter -0.5099724
747 Akkermansia Roseburia -0.5741032

For fun, let’s run the same correlation on other people. I have a private collection of a few hundred samples that others have sent me, stored in the Phyloseq object people.norm. Let’s run the above calculations on those samples to see if the results are similar

people.gut <- subset_samples(people.norm, Site == "gut" & Reads > 10000 & Condition == "Healthy")
people.best <- prune_taxa(taxa_sums(people.gut)>42,people.gut) 
people.mat <- as.matrix(otu_table(people.best))

g <- apply(people.mat,1,function(x) ncol(people.mat)-sum(x<10)) >= 5
people.mat <- people.mat[g,]

nrow(people.mat)
## [1] 154
matCorrs<-cor(t(people.mat)) # matrix of all correlation coefficients
mc<-matCorrs[upper.tri(matCorrs)] # just the upper triangle

ind <- which( upper.tri(matCorrs,diag=F) , arr.ind = TRUE )

mCorr.people<-data.frame( col = dimnames(matCorrs)[[2]][ind[,2]] ,
                   row = dimnames(matCorrs)[[1]][ind[,1]] ,
                   val = matCorrs[ ind ] )

# head(mCorr.people[order(mCorr$val, decreasing = TRUE),],10)
# tail(mCorr.people[order(mCorr$val, decreasing = TRUE),],10)

Here are the most and least-correlated taxa for all people:

mCorr.people %>% arrange(desc(val)) %>% head() %>% knitr::kable()
col row val
Aerococcus Actinobaculum 0.9991366
Aerococcus Solobacterium 0.9970899
Ochrobactrum Delftia 0.9966713
Actinobaculum Solobacterium 0.9962508
Pyramidobacter Actinobaculum 0.9959956
Aerococcus Pyramidobacter 0.9955293
mCorr.people %>% arrange(desc(val)) %>% tail() %>% knitr::kable()
col row val
11776 Erysipelatoclostridium Sarcina -0.3354350
11777 Blautia Sarcina -0.3383840
11778 Sarcina Bacteroides -0.3400012
11779 Terrisporobacter Blautia -0.3431375
11780 Peptococcus Blautia -0.3572107
11781 Subdoligranulum Bacteroides -0.3743589

There are more unique taxa in the sample of people than there are in me. That makes sense, since you’d expect more diversity amount lots of people. Here are the taxa that are in me but not in people.best:

setdiff(rownames(gut.mat),rownames(people.mat))
##  [1] "Oligella"           "Achromobacter"      "Stenotrophomonas"  
##  [4] "Ralstonia"          "Shinella"           "Neisseria"         
##  [7] "Pasteurella"        "Rothia"             "Johnsonella"       
## [10] "Phyllobacterium"    "Acinetobacter"      "Planomicrobium"    
## [13] "Pediococcus"        "Tissierella"        "Bradyrhizobium"    
## [16] "Methylobacterium"   "Methanosphaera"     "Sphingomonas"      
## [19] "Aquabacterium"      "Pelomonas"          "Anaerobacter"      
## [22] "Azospira"           "Trueperella"        "Parasporobacterium"
## [25] "Raoultella"         "Hafnia"             "Rahnella"          
## [28] "Sedimentibacter"    "Tessaracoccus"      "Fretibacterium"    
## [31] "Caldicoprobacter"   "Geobacillus"        "Anaerobacterium"   
## [34] "Coprobacillus"      "Desulfitibacter"    "Enorma"            
## [37] "Proteiniphilum"
setdiff(rownames(people.mat),rownames(gut.mat))
##  [1] "Senegalimassilia" "Eremococcus"      "Negativicoccus"   "Dermabacter"     
##  [5] "Butyricicoccus"   "Olsenella"        "Howardella"       "Acetivibrio"     
##  [9] "Syntrophococcus"  "Megamonas"        "Parvibacter"      "Cellulosilyticum"
## [13] "Actinobaculum"    "Alloscardovia"    "Anaeroglobus"     "Aerococcus"

Let’s see if a few common taxa are similarly correlated:

Here are the microbes that are most and least correlated with Blautia

in all people:

mCorr.people %>% dplyr::filter(col=="Blautia") %>% arrange(desc(val)) %>% head() %>% knitr::kable()
col row val
Blautia Anaerostipes 0.2092081
Blautia Pseudobutyrivibrio 0.1837263
Blautia Dorea 0.1725876
Blautia Anaerotruncus 0.1682866
Blautia Klebsiella 0.1620616
Blautia Marvinbryantia 0.1250385
mCorr.people %>% dplyr::filter(col=="Blautia") %>% arrange(val) %>% head() %>% knitr::kable()
col row val
Blautia Sarcina -0.3383840
Blautia Oscillibacter -0.3260838
Blautia Odoribacter -0.2945652
Blautia Fibrobacter -0.2704612
Blautia Victivallis -0.2434587
Blautia Oscillospira -0.2403851

and just in me:

mCorr %>% dplyr::filter(col=="Blautia") %>% arrange(desc(val)) %>% head() %>% knitr::kable()
col row val
Blautia Dorea 0.6234608
Blautia Collinsella 0.5392529
Blautia Anaerostipes 0.5102585
Blautia Pseudobutyrivibrio 0.4512732
Blautia Hespellia 0.4249490
Blautia Roseburia 0.3655861
mCorr %>% dplyr::filter(col=="Blautia") %>% arrange(val) %>% head() %>% knitr::kable()
col row val
Blautia Akkermansia -0.4108318
Blautia Barnesiella -0.2996382
Blautia Thalassospira -0.2952619
Blautia Alistipes -0.2675867
Blautia Bacteroides -0.2160841
Blautia Odoribacter -0.2121982

Interestingly, at least among the top microbes, there does seem to be some agreement (Blautia - Dorea, Blautia Anaerostipes). Just a coincidence? Hmm..

If I can think of a better way to present this information – or if you have any suggestions for me – I’ll update this post.